
Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

1

VERGE DB: AN IOT ANALYTICS DATABASE FOR EDGE DEVICES

Mr.Pitta Sankara Rao1., Jagadhabi Tanuja2
1 Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women.,

Maisammaguda., Medchal., TS, India

2, B.Tech ECE (21RG1A0427),

Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India

ABSTRACT

New infrastructure is needed to gather, store, and analyze massive amounts of time-series data generated by

the explosion of Internet of Things (IoT) applications. We anticipate that considerable data processing will

need to occur at the edge of the network in order to achieve these scalability requirements. In this work, we

introduce VergeDB, a database designed for adaptive and task-aware compression of Internet of Things data,

which treats complicated analytical tasks and machine learning as first-class operations. Depending on the

context, VergeDB may act as either a lightweight storage engine that compresses the data depending on

downstream duties or as an edge-based database that handles compression as well as in-situ analytics on raw

and compressed data. VergeDB will make choices to improve speed, data compression, and downstream job

correctness by making the most of the available CPU resources, storage space, and network bandwidth.

INTRODUCTION

New monitoring applications made possible by the

expanding Internet of Things (IoT) are reshaping

whole sectors including the automotive,

agricultural, healthcare, retail, manufacturing,

transportation, and utility sectors [38]. Analysts

predict that by 2020 there will be billions of IoT

devices in use, each producing zettabytes (ZB) of

data [17, 22]. New difficulties arise in data

collecting, processing, storage, and analysis as a

result of this influx of data, which consists mostly

of time series [3, 53].

Although analytics over sensor networks was

widely investigated by the database community in

the early 2000s [51], the hardware and software

assumptions behind this study have since

undergone significant changes. To begin, edge

devices have greatly expanded their capabilities

over the last two decades, allowing for

considerably more complicated processes to be

performed on the data before it is centralized.

Furthermore, there has been a transition in analytics

workloads away from SQL-based analytics and

toward machine learning, particularly for time-

series data. We propose that the data being

collected by the Internet of Things management

systems do not adequately embrace these two

transitions in computing.

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

2

Figure 1: Effectiveness of data reduction methods on two downstream tasks: (a) autoregressive modeling of a

timeseries of particles using different subsampling methods; and (b) classification accuracy of 128 time-series

datasets [11] using similarity-preserving representation learning methods.

This is a difficult puzzle to solve since the two

parts are deeply intertwined. Edge devices with

sufficient processing power can make nuanced

judgments about I private data that should be

destroyed, (ii) data relevant for triggering actions

that should be evaluated in real time, and (iii)

historical or uninteresting data that should be

aggressively compressed or aggregated. Machine

learning data consumers, on the other hand, are

very sensitive to artifacts in the data collecting

process that alter the distributions of the features

that are collected. Thus, little modifications to data

compression or aggregation may have significant

effects on task precision [48]. Choices must be

made with the downstream job in mind, since

moving processes to edge devices may minimize

the need for compute, storage, memory, power, and

bandwidth in the central processing unit (CPU). An

edge-based system that can swiftly ingest data from

sensors while optimizing for compression,

aggregation, and filtering depending on the

demands of a downstream analytics consumer is

something that is sorely lacking in the realm of IoT

data management.

Accordingly, this paper presents VergeDB, a

database for adaptive and task-aware compression

of IoT data that supports complex analytical tasks

and machine learning as firstclass operations.

VergeDB allows for either lightweight storage

engines that compress the data based on

downstream tasks or for edge-based databases that

manage both compression and in-situ analytics on

raw and compressed data. One should think of

VergeDB as an intermediary between the “fire

hose” of IoT data and user-written analytics

programs. VergeDB will optimize for available

computation resources, storage capacity, and

bandwidth when making decisions in order to

maximize throughput, data compression, and result

quality, while adhering to resource constraints.

While the database community has developed an

extensive theory on how to appropriately select

data compression schemes [19], much less attention

has been given in their effectiveness for typical IoT

analytics tasks, e.g., anomaly detection. As a result,

existing IoT solutions suffer from three main

drawbacks: (i) solutions rely on lossless

compression methods that do not support directly

any form of analytics (e.g., byte-oriented

compression methods that require full

decompression before any operation can be

performed [55]) or support lightweight columnar

encoding that has limited benefits for numeric data

types; (ii) solutions rely on lossy compression

methods tailored to support only specific operations

(e.g., sampling methods supporting aggregation

operations [1, 9]); or (iii) solutions rely on

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

3

quantization and indexing mechanisms that cannot

easily be extending to machine learning tasks (e.g.,

popular time-series databases1).

 To illustrate this point, in Figure 1 we present two

examples of the effectiveness of compression

methods in a autoregressive modelling task and a

classification task. First, we show how new non-

uniform sampling methods [27] and uniform

sampling may be more accurate than a block

sampler (Section 4.2) in terms of reconstruction

error, but can be significantly worse when

compared in terms of end-to-end performance on

an autoregressive model (Figure 1a). Second, we

demonstrate how a recent time-series sparse coding

method, SIDL [54], that is known it can support

aggregation queries accurately [35], fails to

accurately support timeseries classification unlike

GRAIL [40] across 128 time-series datasets of the

UCR time-series archive [11] (each circle

represents a dataset in Figure 1b and circles above

diagonal show better classification accuracy for

GRAIL).

VergeDB is an important step to move beyond the

basic SQL-like analytics towards anomaly

detection, regression, clustering, and classification.

VergeDB sits between the source of data and a

downstream analytics consumer that optimizes

which data to collect, how accurately to represent

it, and how to allocate edge resources. By pushing

algorithms to the edge devices, VergeDB alleviates

the strain of centralized IoT solutions that can have

deteriorating performance with the increasingly

larger number of IoT devices and data. However, as

our motivating results suggest, the task must inform

these decisions.

SYSTEM OVERVIEW

In Figure 2, we outline the key components of

VergeDB. Our initial prototype is written in Rust.

We elaborate on the compression methods in more

detail in Section 4.

VergeDB allows the collection and aggregation of

data from multiple device clients. The database can

be configured to accept multiple different signals

that corresponds to a metric that the clients

produce, such as temperature and humidity (1 and

2). For each signal, a server-buffered signal is

created when initialized. The server accepts data

generated by the remote clients (3), and the

buffered signal segments the data into fixed size

arrays, attaches a timestamp for the segment, and

pushes it to the uncompressed buffer (4). As the

uncompressed buffer is being filled, compression

threads offload data from the uncompressed buffer

and process them (5). The compression threads

are adaptively configured to use different

compression algorithms based on storage capacity,

network bandwidth, ingestion rate, and specified

analytical task. If the uncompressed buffer exceeds

its capacity, which may happen when the ingestion

rate exceeds the compression speed, the data is

flushed to the disk. The compression threads push

the compressed data into a compressed buffer pool,

which can also flush to disk (6). VergeDB can

execute queries or analysis (e.g., clustering or

outlier detection) either over the compressed data

or the raw time-series segments in the

uncompressed buffer.

VergeDB currently supports byte-compression

techniques, such as Gzip and Snappy, and

lightweight encodings, such as dictionary encoding,

Gorilla [44], and Sprintz [5] for numeric data.

VergeDB also supports specialized time-series

representation methods (i.e., lossy compression),

such as Piecewise Aggregate Approximation

(PAA) [52, 28], Fourier transform [15], and sparse

and dense representation learning methods [54, 40]

for advanced analytical workloads. These

approaches differ in terms of compression ratio,

compression throughput, and query efficiency and

accuracy. There is no one size fits all approach for

any time series or task. With system resources

limitations found in edge devices, such a system

must be able to adaptively switch the compression

approach according to the data features (e.g., data

arriving rate, sortedness, and cardinality) and target

tasks. For example, by using principled properties

of the Fourier transform, we can effectively control

computation and memory usage during training and

inference for Convolutional Neural Networks,

while retaining high prediction accuracy and

improving robustness to adversarial attacks [13].

Compression should not only reduce storage

requirements, but also enhance the query

performance. Most current numeric compression

methods are not query-friendly as data need to be

uncompressed before query execution. Such

decompression introduces unnecessary overhead

for a query which counters the goal of an efficient

edge database. Therefore, more powerful and

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

4

efficient compression methods for time-series data

are needed to not only compress the data

effectively but also run queries directly on encoded

data under limited edge resources. In Section 4.1,

we present a precision-aware compression method

that works on numeric data of bounded range,

which accelerates filtering operations while

achieving competitive compression ratio and

throughput. In Section 4.3, we present a solution to

quantize learned similarity-preserving

representations in order to enable a multitude of

data mining and machine learning tasks to

efficiently retrieve similar time series even under

resourceconstrained settings. Learning

representations that preserve arbitrary, user-

defined, similarity functions is crucial considering

recent studies that have demonstrated significant

trade-offs between accuracy and efficiency for

downstream tasks based on the choice of similarity

function [40, 43].

In addition to multiple compression techniques, the

system also allows for data subsampling methods.

Like compression, there is no single sampling

scheme that is universally optimal for a given

dataset and analytics. We find that uniform

sampling is effective at capture global properties

(e.g., overall mean), but ineffective at capturing

local trends (e.g., those that would be useful

features in an anomaly detector) so we develop new

alternatives (Section 4.2). Subsamples could be

further compressed by the aforementioned methods

in a hierarchical fashion.

Beyond numeric data, VergeDB also supports

string attributes that are often associated (as

metadata) with timevarying measurements. Recent

projects on string compression show impressive

compression and query benefits, especially for

attributes sharing a distinctive pattern (e.g., IP

address, log tag, and location coordinates) [26, 7,

34].

Currently, VergeDB permits each signal to be

associated with one or more compression schemes

so that multiple applications can be supported. We

are working on a controller to automatically select

the compression approach, given the workload,

data arrival rates, and resource capacity.

RELATED WORK

We refer the reader to [14] for an extensive

overview of representation methods for time series

and to [25] for a survey on time-series database

management systems.

 Approximate query processing: Approximate

query processing (AQP) is a widely studied

paradigm for accelerating computation by enabling

analytics over some form of compressed data.

Based on the error guarantees, we divide AQP

methods into probabilistic and deterministic

methods. Probabilistic methods approximate the

query answers over a small sample of the data and

provide some confidence value for the

approximated answer [1, 9, 39, 50]. In contrast,

deterministic methods offer approximate answers

with perfect confidence. The majority of the work

has focused on supporting aggregation operations

for a single time series [10, 20] with the exception

of recent work that focuses on correlation-based

queries for multiple time series [32].

Data compression: Database systems rely on data

compression techniques (e.g., histograms) [23, 45]

to estimate the cardinality [23] and selectivity [46]

of specific queries. Unfortunately, such

summarization techniques are not suitable for time-

series data. The signal processing and time-series

communities has devoted significant effort to study

representation methods that reduce the high

dimensionality of time series and lower the storage

and computational costs.

 Time-series representations: The most prevalent

techniques in that context represented time series

using Singular Value Decomposition (SVD) [30,

47], Discrete Fourier Transform (DFT) [2, 15], and

Discrete Wavelet Transform (DWT) [8]. The

Piecewise Aggregate Approximation (PAA) [52,

28] represents time series as mean values of

segments, whereas other approaches, namely,

Piecewise Linear Approximation (PLA) [49] and

Adaptive Piecewise Constant Approximation

(APCA) [29], fit a polynomial model or use a

constant approximation for each segment,

respectively. The output of all previous methods is

numeric. Symbolic methods additionally quantize

the numeric output. For example, the Symbolic

Aggregate approXimation (SAX) [33] and rely on

alphabets to transform PAA epresentations into

short words. A number of works exist that rely on

dictionary-based compression methods to support

more advanced analytics, such as classification and

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

5

similarity search. For example, in [36], a data-

aware version of PAA uses vector quantization to

constructa codebook of segments and develop a

multi-resolution symbolic representation to support

similarity search queries. In [31], a Limpel-

Zivdictionary-based compression method for time

series is proposed, which can be used for time-

series classification [21]. Tristan [35],

approximates time series as a combination of time-

series patterns using an extracted dictionary. The

sparse weights (or coefficients) that correspond to

each atom in the dictionary serve as the new

compressed representation of the time series.

In addition to high-level time-series

representations, there are many compression

techniques for numeric data, which perform

differently based on the time-series distribution.

Record-oriented compressiontransform each

record into a compact representation. Popular

record-oriented compression includes bit-packed

encoding, delta encoding, runlength encoding,

dictionary encoding and their hybrid variations for

integer types, and Gorilla [44] and Sprintz [5] for

float types. Bit-packed encoding stores input value

using as few bits as possible to save space. Delta

encoding saves delta between consecutive records.

Run-length encoding saves consecutive repeated

records with tuple. Dictionary encoding [34] uses

bijective mapping to replace records with a more

compact code. Gorilla [44] is an in-memory time-

series database developed by Facebook. It

introduces two encoding to improve delta

encoding: deltaof-delta for timestamps, which is

usually a increasing integer sequence. XOR-based

encoding for value domain, which is float type. In

the XOR-based float encoding, successive float

values are XORed together, and only the different

bits (delta) are saved. The delta is then stored using

control bits to indicate how many leading and

trailing zeroes are in the XOR value. Gorilla is the

state-of-the-art approach for float data

compression. Sprintz [5] was originally designed

for integer time-series compression. Sprintz

employs a forecast model to predict each value

based on previous records. Sprintz then encodes the

delta between the predicted value and the actual

value. Those delta values are usually closer to zero

than the actual value, making it smaller when

encoded with bit-packed encoding. It is also

possible to apply Sprintz to floats by first

quantizing the float into integer. Those record-

oriented compression maintains entry boundaries

during compression, which enables direct access

and filtering on compressed records without

decoding.

Byte-oriented compression encodes the data stream

in byte level. Popular techniques, such as Gzip and

Snappy, derived from the LZ77 family [55], which

looks for repetitive sub-sequence within a sliding

window on the input byte stream, and encodes the

recurring sub-sequence as a reference to its

previous occurrence. For better compression ratio,

Gzip applies Huffman encoding on the reference

data stream. Snappy skips Huffman encoding for

higher throughput. Byte-oriented compression

treats the input values as byte stream and encodes

them sequentially. The data block needs to be

decompressed before accessing original values.

Time-series subsampling: Time-series

subsampling has been extensively investigated

from a theoretical perspective[12, 37], with several

efficient algorithms and known guarantees.

However, most practical systems today choose a

uniform sampling scheme where data points are

sampled at a known interval, and there is

substantial work on how to adaptively tune that

interval [18]. Our experiments suggest that uniform

sampling, even when adaptive, is not a panacea and

can loose local structure. Non-uniform sampling

work includes BlazeIt, a database system that uses

Empirical Bernstein [27] to subsample time series

data, we find that such a method is effective at

counting events but not as good for trend

estimation. In VergeDB, we develop new adaptive

sampling schemes that are better tuned for machine

learning data consumers.

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

6

Figure 3: Compression performance on

representative datasets: Voltage generated by

electro-mechanical energy conversion. PMU

recording synchrophasor events in a power

grid.CPU usage data from the Azure public

dataset.Stock including daily price for all US-based

stocks.UCR time series classification archive.

Temp including daily temperature of major cities.

SYSTEM COMPONENTS We outline three key

novel compression methods for supporting

analytics in VergeDB. Individually, these methods

support a wide range of database operations, but

the methods are complementary and can be

composed to support a wider range of advanced

analytical operations and machine learning tasks.

For the similarity-preserving compression method,

GRAIL, a preliminary report is available [40].

Precision-Aware Data Compression The main goal

of compression for time-series databases is to build

an efficient and effective compression approach for

numeric data. The compression should not only

keep the compressed data size smaller, but also

support fast query execution, which includes fast

filtering, aggregations, distancebased similarity

evaluations, and materialization for machine

learning tasks. We start by studying the

aforementioned compression techniques on a wide

range of datasets that cover common IoT use cases.

We measure compression ratio, compression

performance, and range filtering on float values

only, as shown in Figure 3. The state-of-the-art

approach, Gorilla, does not achieve satisfactory

results on most datasets. On the CPU dataset, the

compressed data is even larger than the original

one. Gorilla performs poorly on those datasets as

floats provides more than required precision which

leads to significant bit changes even with a subtle

value change. In terms of compression throughput,

as shown in Figure 3b, Sprintz achieves a good

compression throughput overall, but it fails on

thePMU dataset where float quantizing introduces

integer overflow issue. While Snappy has high

compression throughput and range filtering for

many datasets, it does not compress effectively on

most datasets. As expected, GZip exhibits the

inverse behavior. Dictionary encoding (Dict) works

well the cardinality is low enough that recoding

float values as integer keys can provide good

compression. Query performance (i.e., range

filtering) varies with different compression

techniques as shown in Figure 3c. Sprintz achieves

high filtering throughput overall, since we can

partially avoid decoding the encoded value by

predicate rewriting. The float predicate value is

translated (quantized) into the target integer before

the filter execution, but Sprintz still needs to

decode the value into an integer for filter

evaluation. Except for Sprintz, full decompression

is needed for all the other approaches when

filtering values.

A good numeric data compression should be able to

work directly on encoded data directly without

decoding to speed up query performance. However,

the amount of precision provided with standard

float or double formats limits either the

compression ratio or throughput performance.

Given that many IoT domains work on devices

with bounded precision (such as a thermometer

giving 1 or 2 decimal points of precision), we are

developing a new compression technique,

SplitDouble, to work on bounded range data with

fixed precision (such as numeric in PostgeSQL) for

float types. We decompose the data into integers

and decimals with a columnar format, and use a

combination of bit-packing and delta encoding. As

shown in Figure 3, SplitDouble provides good

compression ratios, compression throughput, and

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

7

range filtering. We are currently exploring methods

to improve the compression throughput and query

support for this method.

Subsampling Compression

 Subsampling can be a powerful tool to reduce the

amount of data to be stored and analyzed.

However, as we saw in the introduction, existing

methods can fail to capture temporal structure. We

bring ideas from time-series bootstrap [12] to

design a new time-series subsampler that captures

local trend information more accurately than

popular alternatives by sampling contiguous blocks

of data. Ideally, this method should be able to

subsample blocks from the data and stop when the

a convergence criteria has been met. There aretwo

important pieces of the method that are vital to its

effectiveness: the block size and the stopping

criteria. We can build an entire family of samplers

by using different criteria for stopping conditions

and block size parameters (we defer this discussion

to future work).

Figure 4: Synthetic generated AR(2) time series

and coefficients retrieved from 0.35% of the data

using different subsampling methods

We applied the block subsampling method to a

sythetic time series generated from a autoregressive

model of order

 2. The goal in this particular scenario is to estimate

two autoregressive coefficients of the stochastic

process. Obtaining good estimates of coefficients in

an autogressive process is extremely useful in tasks

ranging from prediction of future events to

simulating the original stochastic process. Based on

Figure 4, the results of the block subsampling are

far superior to the other methods. They are within

5% of the ground truth and in this particular case

using only 0.35% of the original data. All

subsampling methods were controlled by the

number of data points that they would generate,

and the accuracy can be indirectly controlled by the

convergence rate of the subsampling method.

Similarity-Preserving Compression

The most accurate time-series mining methods

cannot often scale to millions of time series [14, 4].

This is because, in addition to large time-series

volumes, the temporal ordering and high-

dimensionality complicates the comparison of time

series and increases the computation and storage

requirements of methods operating directly over

time series. The design of effective solutions

require decisions for three core components [14]:

(i) the representation method to compress time

series; (ii) the comparison method to determine the

similarity between time series and (iii) the indexing

method to organize and retrieve similar time series

from massive collections. Unfortunately, these

components have largely been investigated and

developed independently [40], often resulting in

mutually incompatible methods.

To address this issue, we recently presented the

GRAIL framework [40] to automate the process of

learning how to compress time series while

preserving user-specified similarity functions. This

differs substantially from current approaches (see

Section 3) that are agnostic to the similarity

function needed in downstream tasks. In Figure 1b,

we illustrated this point by presenting a

classification experiment. Specifically, when a

common classifier operates over GRAIL’s

representations achieves substantially better

classification accuracy in comparison to when it

operates over compressed data generated with a

task-agnostic method.

With GRAIL, we coupled two out of the three core

components mentioned before, namely, the

representation method with the comparison

method. An important next step is to couple a

method that quantizes numeric vectors and

accelerates similarity search. Such a method, in

combination with GRAIL’s representations that

preserves time-series similarities will enable data

mining and machine learning tasks (e.g., clustering,

classification, pattern search, anomaly detection,

sampling, and visualization [41, 42, 40]) to

efficiently retrieve similar time series even under

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

8

resource-constrained settings. We are actively

exploring such quantization methods. In particular,

we focus on methods that rely on clustering to

partition the search space. In simple terms, every

vector is associated with a handful of representative

examples and, therefore, when a new time series

arrives, it suffices to compare only against such

representative examples, which avoids looking up

the vast portion of dissimilar time series. In Figure

5 we report preliminary results of our Clustered

GRAIL (C-GRAIL) method against rival

approaches for numeric vector quantization. We

measure the precision accuracy of retrieving the

true nearest neighbor as well as the runtime cost it

takes to achieve that. We observe that C-GRAIL

achieves comparable runtime performance to one

of the fastest but less accurate methods, namely,

Bolt [6]. Interestingly, our method outperforms in

terms of accuracy two state-of-the-art product

quantization methods, namely, PQ [24] and OPQ

[16].

Figure 5: Precision (accuracy) and runtime

performance of quantization methods that

accelerate similarity search on established

benchmark datasets [6]

PROTOTYPE SYSTEM EVALUATION

 To evaluate the ingestion throughput of our

prototype implementation, we set up an experiment

where a remote client (residing in the same

datacenter) is sending messages over the network

to VergeDB. The batch size of each message was

fixed to 64 points of 64-bit float values and,

overall, 400M points were received. We measure

the time required to complete the ingestion, from

which the throughput was calculated. We repeat the

experiment 10 times and report the results without

compression and with two popular compression

methods, namely, GZip and PAA, in Figure 6. We

observe an increase in the throughput as we vary

the number of threads in all three configurations.

The sublinear growth is due to the increasing lock

contention. Interestingly, for PAA, the compression

thread completes each segment faster than in the

case of GZip, causing a greater contention on the

uncompressed bufferpool lock. By having a closer

look at the compression rates, PAA compresses

almost 100% of the segments while maintaining on

ingestion rate of over 1.8M points/sec even with

only one thread. In contrast,GZip compresses on

average 1% of the ingested segments. VergeDB is

able to ingest data for multiple signals without loss

in the overall throughput. By adaptively changing

the number of available threads for compression

based on the input data rates and compression cost,

VergeDB could eventually control the rate at which

data is being compressed in order to minimize

storing uncompressed data albeit at the cost of

some ingestion throughput.

Figure 6: Average ingestion throughput of

VergeDB without compression and with two

popular compression methods.

Figure 7: Compression throughput for two popular

compression methods with up to 8 compression

threads

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

9

Figure 8: Compression throughput for two popular

compression methods with different compression

batch sizes

Figures 7 and 8 show the compression throughput

while varying the number of compression threads

and compression batch sizes (number of segments

fetched per lock), respectively. For GZip, we

observe that by increasing the number of

compression threads, the compression throughput

improves while increasing the compression batch

size does not help because GZip is a computation-

intensive compression workload. On the other

hand, PAA is much faster than GZip so that lock

contention becomes the bottleneck. By increasing

the compression batch size, PAA achieves

significant improvement in compression throughput

while adding more compression threads does not

result in an improvement but adds locking

overhead. These preliminary results demonstrate

VergeDB’s ability to ingest high throughput data

and the importance of compression selection while

adhering to available resources.

CONCLUSION

The volume of information created by connected

devices and requiring cloud storage and analysis is

expected to increase in tandem with the popularity

of the Internet of Things. To reduce data

transmission to the cloud while maintaining local

support, an edge-based database equipped with

adaptive compression and the ability to perform

advanced analytics is necessary. When

implementing lossy compression methods, such

adaptation will have to take into account both the

available resources and the jobs that lie in the

pipeline. As a beginning step towards this goal, we

introduced VergeDB.

REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner,

S. Madden, and I. Stoica. Blinkdb: queries with

bounded errors and bounded response times on

very large data. In Proceedings of the 8th ACM

European Conference on Computer Systems, pages

29–42. ACM, 2013.

[2] R. Agrawal, C. Faloutsos, and A.

Swami.Efficient similarity search in sequence

databases. FODA, pages 69–84, 1993.

[3] G. Amvrosiadis, A. R. Butt, V. Tarasov, E.

Zadok, M. Zhao, I. Ahmad, R. H. Arpaci-Dusseau,

F. Chen, Y. Chen, Y. Chen, et al. Data storage

research vision 2025: Report on nsf visioning

workshop held may 30–june 1, 2018. 2018.

[4] A. Bagnall, J. Lines, A. Bostrom, J. Large, and

E. Keogh. The great time series classification bake

off: a review and experimental evaluation of recent

algorithmic advances. Data Mining and Knowledge

Discovery, 31(3):606–660, 2017.

[5] D. Blalock, S. Madden, and J. Guttag. Sprintz:

Time series compression for the internet of things.

Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 2(3):1–23,

2018.

[6] D. W. Blalock and J. V. Guttag. Bolt:

Accelerated data mining with fast vector

compression. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 727–735, 2017.

[7] P. Boncz, T. Neumann, and V. Leis.Fsst: fast

random access string compression. Proceedings of

the VLDB Endowment, 13(12):2649–2661, 2020.

 [8] K.-P. Chan and A. W.-C.Fu.Efficient time

series matching by wavelets. In ICDE, pages 126–

133. IEEE, 1999.

[9] S. Chaudhuri, G. Das, and V. Narasayya.

Optimized stratified sampling for approximate

query processing. ACM Transactions on Database

Systems (TODS), 32(2):9, 2007.

[10] G. Cormode, F. Korn, S. Muthukrishnan, and

D. Srivastava. Effective computation of biased

quantiles over data streams. In 21st International

Conference on Data Engineering (ICDE’05), pages

20–31.IEEE, 2005.

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

10

 [11] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M.

Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana,

Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen,

G. Batista, and Hexagon-ML. The ucr time series

classification archive, October 2018. https:

//www.cs.ucr.edu/˜eamonn/time series data 2018/.

[12] M. W. Dimitris N. Politis, Joseph P. Romano.

Subsampling.Springer Series in Statistics.Springer,

1 edition, 1999.

[13] A. Dziedzic, J. Paparrizos, S. Krishnan, A.

Elmore, and M. Franklin.Band-limited training and

inference for convolutional neural networks.In

International Conference on Machine Learning,

pages 1745–1754, 2019.

[14] P. Esling and C. Agon.Time-series data

mining. ACM Computing Surveys (CSUR),

45(1):12, 2012.

[15] C. Faloutsos, M. Ranganathan, and Y.

Manolopoulos.Fast subsequence matching in time-

series databases. In SIGMOD, pages 419–429,

1994.

 [16] T. Ge, K. He, Q. Ke, and J. Sun. Optimized

product quantization. IEEE transactions on pattern

analysis and machine intelligence, 36(4):744–755,

2013.

[17] S. George. IoT Signals report: IoT’s promise

will be unlocked by addressing skills shortage,

complexity and security., 2019 (accessed August

15, 2020).

https://blogs.microsoft.com/blog/2019/07/30/.

[18] D. Giouroukis, A. Dadiani, J. Traub, S. Zeuch,

and V. Markl. A survey of adaptive sampling and

filtering algorithms for the internet of things. In

DEBS’20: 14th ACM International Conference on

Distributed and Event-Based Systems, 2020.

[19] G. Graefe and L. D. Shapiro.Data compression

and database performance.University of Colorado,

Boulder, Department of Computer Science, 1990.

[20] M. Greenwald, S. Khanna, et al. Space-

efficient online computation of quantile summaries.

ACM SIGMOD Record, 30(2):58–66, 2001.

[21] B. Hu, Y. Chen, and E. Keogh.Time series

classification under more realistic assumptions. In

Proceedings of the 2013 SIAM International

Conference on Data Mining, pages 578–586.

SIAM, 2013.

[22] M. Hung. Leading the iot, gartner insights on

how to lead in a connected world. Gartner

Research, pages 1–29, 2017.

[23] Y. E. Ioannidis and V. Poosala.Balancing

histogram optimality and practicality for query

result size estimation. In AcmSigmod Record,

volume 24, pages 233–244. ACM, 1995.

[24] H. Jegou, M. Douze, and C. Schmid.Product

quantization for nearest neighbor search. IEEE

transactions on pattern analysis and machine

intelligence, 33(1):117–128, 2010.

[25] S. K. Jensen, T. B. Pedersen, and C. Thomsen.

Time series management systems: A survey. IEEE

Transactions on Knowledge and Data Engineering,

29(11):2581–2600, 2017.

[26] H. Jiang, C. Liu, Q. Jin, J. Paparrizos, and A.

J. Elmore.Pids: attribute decomposition for

improved compression and query performance in

columnar storage. Proceedings of the VLDB

Endowment, 13(6):925–938, 2020.

 [27] D. Kang, P. Bailis, and M. Zaharia. Blazeit:

Optimizing declarative aggregation and limit

queries for neural network-based video analytics,

2018.

[28] E. Keogh, K. Chakrabarti, M. Pazzani, and S.

Mehrotra. Dimensionality reduction for fast

similarity search in large time series databases.

Knowledge and information Systems, 3(3):263–

286, 2001.

[29] E. Keogh, K. Chakrabarti, M. Pazzani, and S.

Mehrotra.Locally adaptive dimensionality

reduction for indexing large time series databases.

ACM Sigmod Record, 30(2):151–162, 2001.

[30] F. Korn, H. V. Jagadish, and C.

Faloutsos.Efficiently supporting ad hoc queries in

large datasets of time sequences. In SIGMOD,

SIGMOD ’97, pages 289–300, New York, NY,

USA, 1997. ACM.

[31] W. Lang, M. Morse, and J. M.

Patel.Dictionary-based compression for long time-

series similarity. IEEE transactions on knowledge

and data engineering, 22(11):1609–1622, 2009.

https://blogs.microsoft.com/blog/2019/07/30/

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

11

 [32] C. Lin, E. Boursier, and Y. Papakonstantinou.

Plato: approximate analytics over compressed time

series with tight deterministic error guarantees.

Proceedings of the VLDB Endowment,

13(7):1105–1118, 2020.

 [33] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A

symbolic representation of time series, with

implications for streaming algorithms. In

Proceedings of the 8th ACM SIGMOD workshop

on Research issues in data mining and knowledge

discovery, pages 2–11. ACM, 2003.

[34] C. Liu, M. Umbenhower, H. Jiang, P.

Subramaniam, J. Ma, and A. J. Elmore.Mostly

order preserving dictionaries. In 2019 IEEE 35th

InternationalConference on Data Engineering

(ICDE), pages 1214–1225. IEEE, 2019.

 [35] A. Marascu, P. Pompey, E. Bouillet, M.

Wurst, O. Verscheure, M. Grund, and P. Cudre-

Mauroux. Tristan: Real-time analytics on massive

time series using sparse dictionary compression. In

2014 IEEE International Conference on Big Data

(Big Data), pages 291–300. IEEE, 2014.

[36] V. Megalooikonomou, Q. Wang, G. Li, and C.

Faloutsos.A multiresolution symbolic

representation of time series. In ICDE, pages 668–

679. IEEE, 2005.

[37] V. Mnih, C. Szepesv´ari, and J.-Y.Audibert.

Empirical bernstein stopping. In Proceedings of the

25th International Conference on Machine

Learning, ICML ˆaA˘Z08, page 672ˆa ´ A¸S679,

New York, NY, USA, 2008. ˘ Association for

Computing Machinery.

 [38] I. C. Ng and S. Y. Wakenshaw. The internet-

of-things: Review and research directions.

International Journal of Research in Marketing,

34(1):3–21, 2017.

[39] N. Pansare, V. R. Borkar, C. Jermaine, and T.

Condie.Online aggregation for large mapreduce

jobs. Proc. VLDB Endow, 4(11):1135–1145, 2011.

[40] J. Paparrizos and M. J. Franklin. Grail:

efficient time-series representation learning.

Proceedings of the VLDB Endowment,

12(11):1762–1777, 2019.

[41] J. Paparrizos and L. Gravano.k-shape:

Efficient and accurate clustering of time series. In

SIGMOD, pages 1855–1870. ACM, 2015.

[42] J. Paparrizos and L. Gravano.Fast and accurate

time-series clustering. ACM Transactions on

Database Systems (TODS), 42(2):8, 2017.

[43] J. Paparrizos, C. Liu, A. J. Elmore, and M. J.

Franklin. Debunking four long-standing

misconceptions of time-series distance measures. In

Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data,

pages 1887–1905, 2020.

[44] T. Pelkonen, S. Franklin, J. Teller, P.

Cavallaro, Q. Huang, J. Meza, and K.

Veeraraghavan. Gorilla: A fast, scalable, in-

memory time series database. Proceedings of the

VLDB Endowment, 8(12):1816–1827, 2015.

[45] G. Piatetsky-Shapiro and C. Connell.Accurate

estimation of the number of tuples satisfying a

condition. ACM Sigmod Record, 14(2):256–276,

1984.

[46] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E.

J. Shekita.Improved histograms for selectivity

estimation of range predicates. In ACM Sigmod

Record, volume 25, pages 294–305. ACM, 1996.

[47] K. V. Ravi Kanth, D. Agrawal, and A. Singh.

Dimensionality reduction for similarity searching

in dynamic databases. In SIGMOD, SIGMOD ’98,

pages 166–176, New York, NY, USA, 1998. ACM.

[48] D. Sculley, G. Holt, D. Golovin, E. Davydov,

T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-

F. Crespo, and D. Dennison. Hidden technical debt

in machine learning systems.In Advances in neural

information processing systems, pages 2503–2511,

2015.

[49] H. Shatkay and S. B. Zdonik.Approximate

queries and representations for large data

sequences. In ICDE, pages 536–545. IEEE, 1996.

[50] L. Sidirourgos, P. Boncz, M. Kersten, et al.

Sciborq: Scientific data management with bounds

on runtime and quality. In CIDR, 2011.

[51] Y. Yao, J. Gehrke, et al. Query processing in

sensor networks. In Cidr, pages 233–244, 2003.

Applied Laser Technology
Vol. 31, No.2 June (2024), pp.01–12

12

 [52] B.-K. Yi and C. Faloutsos. Fast time sequence

indexing for arbitrary lp norms. VLDB, 2000.

 [53] S. Zeuch, A. Chaudhary, B. Monte, H.

Gavriilidis, D. Giouroukis, P. Grulich, S. Breß, J.

Traub, and V. Markl. The nebulastream platform:

Data and application management for the internet

of things. In Conference on Innovative Data

Systems Research (CIDR), 2020.

[54] G. Zheng, Y. Yang, and J. Carbonell.Efficient

shift-invariant dictionary learning.In Proceedings

of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, pages 2095–2104, 2016.

[55] J. Ziv and A. Lempel.A universal algorithm

for sequential data compression. IEEE Transactions

on information theory, 23(3):337–343, 1977.

