
Applied Laser Technology 
Vol. 31, No.2 June (2024), pp.01–12 

 

 

 

 

 

 

 

 
 
 

1 
 

VERGE DB: AN IOT ANALYTICS DATABASE FOR EDGE DEVICES 

Mr.Pitta Sankara Rao1., Jagadhabi Tanuja2 
1 Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women.,  

Maisammaguda., Medchal., TS, India  

2, B.Tech ECE (21RG1A0427), 

Malla Reddy College of Engineering for Women., Maisammaguda., Medchal., TS, India 

 

 

 

ABSTRACT  

New infrastructure is needed to gather, store, and analyze massive amounts of time-series data generated by 

the explosion of Internet of Things (IoT) applications. We anticipate that considerable data processing will 

need to occur at the edge of the network in order to achieve these scalability requirements. In this work, we 

introduce VergeDB, a database designed for adaptive and task-aware compression of Internet of Things data, 

which treats complicated analytical tasks and machine learning as first-class operations. Depending on the 

context, VergeDB may act as either a lightweight storage engine that compresses the data depending on 

downstream duties or as an edge-based database that handles compression as well as in-situ analytics on raw 

and compressed data. VergeDB will make choices to improve speed, data compression, and downstream job 

correctness by making the most of the available CPU resources, storage space, and network bandwidth. 

INTRODUCTION  

New monitoring applications made possible by the 

expanding Internet of Things (IoT) are reshaping 

whole sectors including the automotive, 

agricultural, healthcare, retail, manufacturing, 

transportation, and utility sectors [38]. Analysts 

predict that by 2020 there will be billions of IoT 

devices in use, each producing zettabytes (ZB) of 

data [17, 22]. New difficulties arise in data 

collecting, processing, storage, and analysis as a 

result of this influx of data, which consists mostly 

of time series [3, 53]. 

Although analytics over sensor networks was 

widely investigated by the database community in 

the early 2000s [51], the hardware and software 

assumptions behind this study have since 

undergone significant changes. To begin, edge 

devices have greatly expanded their capabilities 

over the last two decades, allowing for 

considerably more complicated processes to be 

performed on the data before it is centralized. 

Furthermore, there has been a transition in analytics 

workloads away from SQL-based analytics and 

toward machine learning, particularly for time-

series data. We propose that the data being 

collected by the Internet of Things management 

systems do not adequately embrace these two 

transitions in computing. 
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Figure 1: Effectiveness of data reduction methods on two downstream tasks: (a) autoregressive modeling of a 

timeseries of particles using different subsampling methods; and (b) classification accuracy of 128 time-series 

datasets [11] using similarity-preserving representation learning methods. 

This is a difficult puzzle to solve since the two 

parts are deeply intertwined. Edge devices with 

sufficient processing power can make nuanced 

judgments about I private data that should be 

destroyed, (ii) data relevant for triggering actions 

that should be evaluated in real time, and (iii) 

historical or uninteresting data that should be 

aggressively compressed or aggregated. Machine 

learning data consumers, on the other hand, are 

very sensitive to artifacts in the data collecting 

process that alter the distributions of the features 

that are collected. Thus, little modifications to data 

compression or aggregation may have significant 

effects on task precision [48]. Choices must be 

made with the downstream job in mind, since 

moving processes to edge devices may minimize 

the need for compute, storage, memory, power, and 

bandwidth in the central processing unit (CPU). An 

edge-based system that can swiftly ingest data from 

sensors while optimizing for compression, 

aggregation, and filtering depending on the 

demands of a downstream analytics consumer is 

something that is sorely lacking in the realm of IoT 

data management. 

Accordingly, this paper presents VergeDB, a 

database for adaptive and task-aware compression 

of IoT data that supports complex analytical tasks 

and machine learning as firstclass operations. 

VergeDB allows for either lightweight storage 

engines that compress the data based on 

downstream tasks or for edge-based databases that 

manage both compression and in-situ analytics on 

raw and compressed data. One should think of 

VergeDB as an intermediary between the “fire 

hose” of IoT data and user-written analytics 

programs. VergeDB will optimize for available 

computation resources, storage capacity, and 

bandwidth when making decisions in order to 

maximize throughput, data compression, and result 

quality, while adhering to resource constraints. 

 

While the database community has developed an 

extensive theory on how to appropriately select 

data compression schemes [19], much less attention 

has been given in their effectiveness for typical IoT 

analytics tasks, e.g., anomaly detection. As a result, 

existing IoT solutions suffer from three main 

drawbacks: (i) solutions rely on lossless 

compression methods that do not support directly 

any form of analytics (e.g., byte-oriented 

compression methods that require full 

decompression before any operation can be 

performed [55]) or support lightweight columnar 

encoding that has limited benefits for numeric data 

types; (ii) solutions rely on lossy compression 

methods tailored to support only specific operations 

(e.g., sampling methods supporting aggregation 

operations [1, 9]); or (iii) solutions rely on 
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quantization and indexing mechanisms that cannot 

easily be extending to machine learning tasks (e.g., 

popular time-series databases1 ). 

 To illustrate this point, in Figure 1 we present two 

examples of the effectiveness of compression 

methods in a autoregressive modelling task and a 

classification task. First, we show how new non-

uniform sampling methods [27] and uniform 

sampling may be more accurate than a block 

sampler (Section 4.2) in terms of reconstruction 

error, but can be significantly worse when 

compared in terms of end-to-end performance on 

an autoregressive model (Figure 1a). Second, we 

demonstrate how a recent time-series sparse coding 

method, SIDL [54], that is known it can support 

aggregation queries accurately [35], fails to 

accurately support timeseries classification unlike 

GRAIL [40] across 128 time-series datasets of the 

UCR time-series archive [11] (each circle 

represents a dataset in Figure 1b and circles above 

diagonal show better classification accuracy for 

GRAIL).  

VergeDB is an important step to move beyond the 

basic SQL-like analytics towards anomaly 

detection, regression, clustering, and classification. 

VergeDB sits between the source of data and a 

downstream analytics consumer that optimizes 

which data to collect, how accurately to represent 

it, and how to allocate edge resources. By pushing 

algorithms to the edge devices, VergeDB alleviates 

the strain of centralized IoT solutions that can have 

deteriorating performance with the increasingly 

larger number of IoT devices and data. However, as 

our motivating results suggest, the task must inform 

these decisions. 

SYSTEM OVERVIEW  

In Figure 2, we outline the key components of 

VergeDB. Our initial prototype is written in Rust. 

We elaborate on the compression methods in more 

detail in Section 4.  

VergeDB allows the collection and aggregation of 

data from multiple device clients. The database can 

be configured to accept multiple different signals 

that corresponds to a metric that the clients 

produce, such as temperature and humidity ( 1 and 

2 ). For each signal, a server-buffered signal is 

created when initialized. The server accepts data 

generated by the remote clients ( 3 ), and the 

buffered signal segments the data into fixed size 

arrays, attaches a timestamp for the segment, and 

pushes it to the uncompressed buffer ( 4 ). As the 

uncompressed buffer is being filled, compression 

threads offload data from the uncompressed buffer 

and process them ( 5 ). The compression threads 

are adaptively configured to use different 

compression algorithms based on storage capacity, 

network bandwidth, ingestion rate, and specified 

analytical task. If the uncompressed buffer exceeds 

its capacity, which may happen when the ingestion 

rate exceeds the compression speed, the data is 

flushed to the disk. The compression threads push 

the compressed data into a compressed buffer pool, 

which can also flush to disk ( 6 ). VergeDB can 

execute queries or analysis (e.g., clustering or 

outlier detection) either over the compressed data 

or the raw time-series segments in the 

uncompressed buffer.  

VergeDB currently supports byte-compression 

techniques, such as Gzip and Snappy, and 

lightweight encodings, such as dictionary encoding, 

Gorilla [44], and Sprintz [5] for numeric data. 

VergeDB also supports specialized time-series 

representation methods (i.e., lossy compression), 

such as Piecewise Aggregate Approximation 

(PAA) [52, 28], Fourier transform [15], and sparse 

and dense representation learning methods [54, 40] 

for advanced analytical workloads. These 

approaches differ in terms of compression ratio, 

compression throughput, and query efficiency and 

accuracy. There is no one size fits all approach for 

any time series or task. With system resources 

limitations found in edge devices, such a system 

must be able to adaptively switch the compression 

approach according to the data features (e.g., data 

arriving rate, sortedness, and cardinality) and target 

tasks. For example, by using principled properties 

of the Fourier transform, we can effectively control 

computation and memory usage during training and 

inference for Convolutional Neural Networks, 

while retaining high prediction accuracy and 

improving robustness to adversarial attacks [13]. 

Compression should not only reduce storage 

requirements, but also enhance the query 

performance. Most current numeric compression 

methods are not query-friendly as data need to be 

uncompressed before query execution. Such 

decompression introduces unnecessary overhead 

for a query which counters the goal of an efficient 

edge database. Therefore, more powerful and 
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efficient compression methods for time-series data 

are needed to not only compress the data 

effectively but also run queries directly on encoded 

data under limited edge resources. In Section 4.1, 

we present a precision-aware compression method 

that works on numeric data of bounded range, 

which accelerates filtering operations while 

achieving competitive compression ratio and 

throughput. In Section 4.3, we present a solution to 

quantize learned similarity-preserving 

representations in order to enable a multitude of 

data mining and machine learning tasks to 

efficiently retrieve similar time series even under 

resourceconstrained settings. Learning 

representations that preserve arbitrary, user-

defined, similarity functions is crucial considering 

recent studies that have demonstrated significant 

trade-offs between accuracy and efficiency for 

downstream tasks based on the choice of similarity 

function [40, 43].  

In addition to multiple compression techniques, the 

system also allows for data subsampling methods. 

Like compression, there is no single sampling 

scheme that is universally optimal for a given 

dataset and analytics. We find that uniform 

sampling is effective at capture global properties 

(e.g., overall mean), but ineffective at capturing 

local trends (e.g., those that would be useful 

features in an anomaly detector) so we develop new 

alternatives (Section 4.2). Subsamples could be 

further compressed by the aforementioned methods 

in a hierarchical fashion.  

Beyond numeric data, VergeDB also supports 

string attributes that are often associated (as 

metadata) with timevarying measurements. Recent 

projects on string compression show impressive 

compression and query benefits, especially for 

attributes sharing a distinctive pattern (e.g., IP 

address, log tag, and location coordinates) [26, 7, 

34].  

Currently, VergeDB permits each signal to be 

associated with one or more compression schemes 

so that multiple applications can be supported. We 

are working on a controller to automatically select 

the compression approach, given the workload, 

data arrival rates, and resource capacity. 

RELATED WORK  

We refer the reader to [14] for an extensive 

overview of representation methods for time series 

and to [25] for a survey on time-series database 

management systems. 

 Approximate query processing: Approximate 

query processing (AQP) is a widely studied 

paradigm for accelerating computation by enabling 

analytics over some form of compressed data. 

Based on the error guarantees, we divide AQP 

methods into probabilistic and deterministic 

methods. Probabilistic methods approximate the 

query answers over a small sample of the data and 

provide some confidence value for the 

approximated answer [1, 9, 39, 50]. In contrast, 

deterministic methods offer approximate answers 

with perfect confidence. The majority of the work 

has focused on supporting aggregation operations 

for a single time series [10, 20] with the exception 

of recent work that focuses on correlation-based 

queries for multiple time series [32].  

Data compression: Database systems rely on data 

compression techniques (e.g., histograms) [23, 45] 

to estimate the cardinality [23] and selectivity [46] 

of specific queries. Unfortunately, such 

summarization techniques are not suitable for time-

series data. The signal processing and time-series 

communities has devoted significant effort to study 

representation methods that reduce the high 

dimensionality of time series and lower the storage 

and computational costs. 

 Time-series representations: The most prevalent 

techniques in that context represented time series 

using Singular Value Decomposition (SVD) [30, 

47], Discrete Fourier Transform (DFT) [2, 15], and 

Discrete Wavelet Transform (DWT) [8]. The 

Piecewise Aggregate Approximation (PAA) [52, 

28] represents time series as mean values of 

segments, whereas other approaches, namely, 

Piecewise Linear Approximation (PLA) [49] and 

Adaptive Piecewise Constant Approximation 

(APCA) [29], fit a polynomial model or use a 

constant approximation for each segment, 

respectively. The output of all previous methods is 

numeric. Symbolic methods additionally quantize 

the numeric output. For example, the Symbolic 

Aggregate approXimation (SAX) [33] and rely on 

alphabets to transform PAA epresentations into 

short words. A number of works exist that rely on 

dictionary-based compression methods to support 

more advanced analytics, such as classification and 
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similarity search. For example, in [36], a data-

aware version of PAA uses vector quantization to 

constructa codebook of segments and develop a 

multi-resolution symbolic representation to support 

similarity search queries. In [31], a Limpel-

Zivdictionary-based compression method for time 

series is proposed, which can be used for time-

series classification [21]. Tristan [35], 

approximates time series as a combination of time-

series patterns using an extracted dictionary. The 

sparse weights (or coefficients) that correspond to 

each atom in the dictionary serve as the new 

compressed representation of the time series.  

In addition to high-level time-series 

representations, there are many compression 

techniques for numeric data, which perform 

differently based on the time-series distribution.  

Record-oriented compressiontransform each 

record into a compact representation. Popular 

record-oriented compression includes bit-packed 

encoding, delta encoding, runlength encoding, 

dictionary encoding and their hybrid variations for 

integer types, and Gorilla [44] and Sprintz [5] for 

float types. Bit-packed encoding stores input value 

using as few bits as possible to save space. Delta 

encoding saves delta between consecutive records. 

Run-length encoding saves consecutive repeated 

records with tuple. Dictionary encoding [34] uses 

bijective mapping to replace records with a more 

compact code. Gorilla [44] is an in-memory time-

series database developed by Facebook. It 

introduces two encoding to improve delta 

encoding: deltaof-delta for timestamps, which is 

usually a increasing integer sequence. XOR-based 

encoding for value domain, which is float type. In 

the XOR-based float encoding, successive float 

values are XORed together, and only the different 

bits (delta) are saved. The delta is then stored using 

control bits to indicate how many leading and 

trailing zeroes are in the XOR value. Gorilla is the 

state-of-the-art approach for float data 

compression. Sprintz [5] was originally designed 

for integer time-series compression. Sprintz 

employs a forecast model to predict each value 

based on previous records. Sprintz then encodes the 

delta between the predicted value and the actual 

value. Those delta values are usually closer to zero 

than the actual value, making it smaller when 

encoded with bit-packed encoding. It is also 

possible to apply Sprintz to floats by first 

quantizing the float into integer. Those record-

oriented compression maintains entry boundaries 

during compression, which enables direct access 

and filtering on compressed records without 

decoding.  

Byte-oriented compression encodes the data stream 

in byte level. Popular techniques, such as Gzip and 

Snappy, derived from the LZ77 family [55], which 

looks for repetitive sub-sequence within a sliding 

window on the input byte stream, and encodes the 

recurring sub-sequence as a reference to its 

previous occurrence. For better compression ratio, 

Gzip applies Huffman encoding on the reference 

data stream. Snappy skips Huffman encoding for 

higher throughput. Byte-oriented compression 

treats the input values as byte stream and encodes 

them sequentially. The data block needs to be 

decompressed before accessing original values.  

Time-series subsampling: Time-series 

subsampling has been extensively investigated 

from a theoretical perspective[12, 37], with several 

efficient algorithms and known guarantees. 

However, most practical systems today choose a 

uniform sampling scheme where data points are 

sampled at a known interval, and there is 

substantial work on how to adaptively tune that 

interval [18]. Our experiments suggest that uniform 

sampling, even when adaptive, is not a panacea and 

can loose local structure. Non-uniform sampling 

work includes BlazeIt, a database system that uses 

Empirical Bernstein [27] to subsample time series 

data, we find that such a method is effective at 

counting events but not as good for trend 

estimation. In VergeDB, we develop new adaptive 

sampling schemes that are better tuned for machine 

learning data consumers. 
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Figure 3: Compression performance on 

representative datasets: Voltage generated by 

electro-mechanical energy conversion. PMU 

recording synchrophasor events in a power 

grid.CPU usage data from the Azure public 

dataset.Stock including daily price for all US-based 

stocks.UCR time series classification archive. 

Temp including daily temperature of major cities. 

SYSTEM COMPONENTS We outline three key 

novel compression methods for supporting 

analytics in VergeDB. Individually, these methods 

support a wide range of database operations, but 

the methods are complementary and can be 

composed to support a wider range of advanced 

analytical operations and machine learning tasks. 

For the similarity-preserving compression method, 

GRAIL, a preliminary report is available [40]. 

Precision-Aware Data Compression The main goal 

of compression for time-series databases is to build 

an efficient and effective compression approach for 

numeric data. The compression should not only 

keep the compressed data size smaller, but also 

support fast query execution, which includes fast 

filtering, aggregations, distancebased similarity 

evaluations, and materialization for machine 

learning tasks. We start by studying the 

aforementioned compression techniques on a wide 

range of datasets that cover common IoT use cases.  

We measure compression ratio, compression 

performance, and range filtering on float values 

only, as shown in Figure 3. The state-of-the-art 

approach, Gorilla, does not achieve satisfactory 

results on most datasets. On the CPU dataset, the 

compressed data is even larger than the original 

one. Gorilla performs poorly on those datasets as 

floats provides more than required precision which 

leads to significant bit changes even with a subtle 

value change. In terms of compression throughput, 

as shown in Figure 3b, Sprintz achieves a good 

compression throughput overall, but it fails on 

thePMU dataset where float quantizing introduces 

integer overflow issue. While Snappy has high 

compression throughput and range filtering for 

many datasets, it does not compress effectively on 

most datasets. As expected, GZip exhibits the 

inverse behavior. Dictionary encoding (Dict) works 

well the cardinality is low enough that recoding 

float values as integer keys can provide good 

compression. Query performance (i.e., range 

filtering) varies with different compression 

techniques as shown in Figure 3c. Sprintz achieves 

high filtering throughput overall, since we can 

partially avoid decoding the encoded value by 

predicate rewriting. The float predicate value is 

translated (quantized) into the target integer before 

the filter execution, but Sprintz still needs to 

decode the value into an integer for filter 

evaluation. Except for Sprintz, full decompression 

is needed for all the other approaches when 

filtering values. 

A good numeric data compression should be able to 

work directly on encoded data directly without 

decoding to speed up query performance. However, 

the amount of precision provided with standard 

float or double formats limits either the 

compression ratio or throughput performance. 

Given that many IoT domains work on devices 

with bounded precision (such as a thermometer 

giving 1 or 2 decimal points of precision), we are 

developing a new compression technique, 

SplitDouble, to work on bounded range data with 

fixed precision (such as numeric in PostgeSQL) for 

float types. We decompose the data into integers 

and decimals with a columnar format, and use a 

combination of bit-packing and delta encoding. As 

shown in Figure 3, SplitDouble provides good 

compression ratios, compression throughput, and 
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range filtering. We are currently exploring methods 

to improve the compression throughput and query 

support for this method.  

Subsampling Compression 

 Subsampling can be a powerful tool to reduce the 

amount of data to be stored and analyzed. 

However, as we saw in the introduction, existing 

methods can fail to capture temporal structure. We 

bring ideas from time-series bootstrap [12] to 

design a new time-series subsampler that captures 

local trend information more accurately than 

popular alternatives by sampling contiguous blocks 

of data. Ideally, this method should be able to 

subsample blocks from the data and stop when the 

a convergence criteria has been met. There aretwo 

important pieces of the method that are vital to its 

effectiveness: the block size and the stopping 

criteria. We can build an entire family of samplers 

by using different criteria for stopping conditions 

and block size parameters (we defer this discussion 

to future work). 

 

Figure 4: Synthetic generated AR(2) time series 

and coefficients retrieved from 0.35% of the data 

using different subsampling methods 

We applied the block subsampling method to a 

sythetic time series generated from a autoregressive 

model of order 

 2. The goal in this particular scenario is to estimate 

two autoregressive coefficients of the stochastic 

process. Obtaining good estimates of coefficients in 

an autogressive process is extremely useful in tasks 

ranging from prediction of future events to 

simulating the original stochastic process. Based on 

Figure 4, the results of the block subsampling are 

far superior to the other methods. They are within 

5% of the ground truth and in this particular case 

using only 0.35% of the original data. All 

subsampling methods were controlled by the 

number of data points that they would generate, 

and the accuracy can be indirectly controlled by the 

convergence rate of the subsampling method. 

 

Similarity-Preserving Compression  

The most accurate time-series mining methods 

cannot often scale to millions of time series [14, 4]. 

This is because, in addition to large time-series 

volumes, the temporal ordering and high-

dimensionality complicates the comparison of time 

series and increases the computation and storage 

requirements of methods operating directly over 

time series. The design of effective solutions 

require decisions for three core components [14]: 

(i) the representation method to compress time 

series; (ii) the comparison method to determine the 

similarity between time series and (iii) the indexing 

method to organize and retrieve similar time series 

from massive collections. Unfortunately, these 

components have largely been investigated and 

developed independently [40], often resulting in 

mutually incompatible methods.  

To address this issue, we recently presented the 

GRAIL framework [40] to automate the process of 

learning how to compress time series while 

preserving user-specified similarity functions. This 

differs substantially from current approaches (see 

Section 3) that are agnostic to the similarity 

function needed in downstream tasks. In Figure 1b, 

we illustrated this point by presenting a 

classification experiment. Specifically, when a 

common classifier operates over GRAIL’s 

representations achieves substantially better 

classification accuracy in comparison to when it 

operates over compressed data generated with a 

task-agnostic method.  

With GRAIL, we coupled two out of the three core 

components mentioned before, namely, the 

representation method with the comparison 

method. An important next step is to couple a 

method that quantizes numeric vectors and 

accelerates similarity search. Such a method, in 

combination with GRAIL’s representations that 

preserves time-series similarities will enable data 

mining and machine learning tasks (e.g., clustering, 

classification, pattern search, anomaly detection, 

sampling, and visualization [41, 42, 40]) to 

efficiently retrieve similar time series even under 



Applied Laser Technology 
Vol. 31, No.2 June (2024), pp.01–12 

 

 

 

 

 

 

 

 
 
 

8 
 

resource-constrained settings. We are actively 

exploring such quantization methods. In particular, 

we focus on methods that rely on clustering to 

partition the search space. In simple terms, every 

vector is associated with a handful of representative 

examples and, therefore, when a new time series 

arrives, it suffices to compare only against such 

representative examples, which avoids looking up 

the vast portion of dissimilar time series. In Figure 

5 we report preliminary results of our Clustered 

GRAIL (C-GRAIL) method against rival 

approaches for numeric vector quantization. We 

measure the precision accuracy of retrieving the 

true nearest neighbor as well as the runtime cost it 

takes to achieve that. We observe that C-GRAIL 

achieves comparable runtime performance to one 

of the fastest but less accurate methods, namely, 

Bolt [6]. Interestingly, our method outperforms in 

terms of accuracy two state-of-the-art product 

quantization methods, namely, PQ [24] and OPQ 

[16]. 

 

Figure 5: Precision (accuracy) and runtime 

performance of quantization methods that 

accelerate similarity search on established 

benchmark datasets [6] 

PROTOTYPE SYSTEM EVALUATION 

 To evaluate the ingestion throughput of our 

prototype implementation, we set up an experiment 

where a remote client (residing in the same 

datacenter) is sending messages over the network 

to VergeDB. The batch size of each message was 

fixed to 64 points of 64-bit float values and, 

overall, 400M points were received. We measure 

the time required to complete the ingestion, from 

which the throughput was calculated. We repeat the 

experiment 10 times and report the results without 

compression and with two popular compression 

methods, namely, GZip and PAA, in Figure 6. We 

observe an increase in the throughput as we vary 

the number of threads in all three configurations. 

The sublinear growth is due to the increasing lock 

contention. Interestingly, for PAA, the compression 

thread completes each segment faster than in the 

case of GZip, causing a greater contention on the 

uncompressed bufferpool lock. By having a closer 

look at the compression rates, PAA compresses 

almost 100% of the segments while maintaining on 

ingestion rate of over 1.8M points/sec even with 

only one thread. In contrast,GZip compresses on 

average 1% of the ingested segments. VergeDB is 

able to ingest data for multiple signals without loss 

in the overall throughput. By adaptively changing 

the number of available threads for compression 

based on the input data rates and compression cost, 

VergeDB could eventually control the rate at which 

data is being compressed in order to minimize 

storing uncompressed data albeit at the cost of 

some ingestion throughput. 

 

Figure 6: Average ingestion throughput of 

VergeDB without compression and with two 

popular compression methods. 

 

Figure 7: Compression throughput for two popular 

compression methods with up to 8 compression 

threads 
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Figure 8: Compression throughput for two popular 

compression methods with different compression 

batch sizes 

Figures 7 and 8 show the compression throughput 

while varying the number of compression threads 

and compression batch sizes (number of segments 

fetched per lock), respectively. For GZip, we 

observe that by increasing the number of 

compression threads, the compression throughput 

improves while increasing the compression batch 

size does not help because GZip is a computation-

intensive compression workload. On the other 

hand, PAA is much faster than GZip so that lock 

contention becomes the bottleneck. By increasing 

the compression batch size, PAA achieves 

significant improvement in compression throughput 

while adding more compression threads does not 

result in an improvement but adds locking 

overhead. These preliminary results demonstrate 

VergeDB’s ability to ingest high throughput data 

and the importance of compression selection while 

adhering to available resources. 

CONCLUSION 

The volume of information created by connected 

devices and requiring cloud storage and analysis is 

expected to increase in tandem with the popularity 

of the Internet of Things. To reduce data 

transmission to the cloud while maintaining local 

support, an edge-based database equipped with 

adaptive compression and the ability to perform 

advanced analytics is necessary. When 

implementing lossy compression methods, such 

adaptation will have to take into account both the 

available resources and the jobs that lie in the 

pipeline. As a beginning step towards this goal, we 

introduced VergeDB. 
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